PARABOLA

1. The locus of a point which moves in a plane so that its distance from a fixed point bears a constant ratio to its distance from a fixed straight line is called a conic section or conic. The fixed point is called focus, the fixed straight line is called directrix and the constant ratio ' e ' is called eccentricity of the conic.
2. If $\mathrm{e}=1$, then the conic is called a parabola.
3. If $\mathrm{e}<1$, then the conic is called an ellipse.
4. If e >1, then the conic is called a hyperbola.
5. The equation of a conic is of the form $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$.
6. A line $\mathrm{L}=0$ passing through the focus of a conic is said to be the principal axis of the conic if it is perpendicular to the directrix of the conic.
7. The points of intersection of a conic and its principal axis are called vertices of the conic.
8. If a conic has only one vertex then its centre coincides with the vertex.
9. A conic has at most two vertices.
10. The midpoint of the line segment joining the vertices of a conic is called centre of the conic.
11. A conic is said to be in the standard form if the principal axis of the conic is x -axis and the centre of the conic is the origin.
12. The equation of a parabola in the standard form is $y^{2}=4 a x$.
13. For the parabola $y^{2}=4 a x$, verte $=(0,0)$, focus $=(a, 0)$ and the equation of the directrix is $x+a=0$.
14. If we rotate the axes 90° in the clockwise direction then the equation $y^{2}=4 \mathrm{ax}$ of a parabola is transformed to $x^{2}=4 a y$.
15. For the parabola $x^{2}=4 a y$, vertex $=(0,0)$, focus $=(0, a)$, the equation of the directrix is $y+a=0$ and the equation of the principal axis is $\mathrm{x}=0$ (y -axis).
16. A point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is said to be an
i) external point of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ if $\mathrm{y}_{1}{ }^{2}-4 \mathrm{ax}_{1}>0$
ii) internal point of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ if $\mathrm{y}_{1}{ }^{2}-4 \mathrm{ax}_{1}<0$.
17. A chord passing through a point P on the parabola and perpendicular to the principal axis of the parabola is called the double ordinate of the P.
18. A chord of the parabola passing through the focus is called a focal chord.
19. A focal chord of a parabola perpendicular to the principal axis of the parabola is called latus rectum. If the latus rectum meets the parabola in L and L^{\prime}, then $L L^{\prime}$ is called length of the latus rectum.
20. The length of the latus rectum of the parabola $y^{2}=4 a x$ is $4|a|$.
21. If P is a point on the parabola with focus S , then SP is called focal distance of P .
22. The focal distance of $P\left(x_{1}, y_{1}\right)$ on the parabola $y^{2}=4 a x$ is $\left|x_{1}+a\right|$.
23. The equation of the parabola whose axis is parallel to x-axis and vertex at (α, β) is $(y-\beta)^{2}= \pm$ $4 a(x-\alpha),(a>0)$.
24. For the parabola $(y-\beta)^{2}= \pm 4 a(x-\alpha)$, the focus is $(\alpha \pm a, \beta)$ and the equation to the directrix is $x=\alpha \mp a$.
25. The equation $(y-\beta)^{2}= \pm 4 a(x-\alpha)$ can be put in the form $x=1 y^{2}+m y+n$.
26. The equation of the parabola whose axis is parallel to y-axis and vertex at (α, β) is $(x-\alpha)^{2}= \pm$ $4 a(y-\beta)$
27. For the parabola $(x-\alpha)^{2}= \pm 4 a(y-\beta)$, the focus is ($\alpha, \beta \pm a$), the equation of the directrix is $y=$ β ғ a .
28. The equation $(x-\alpha)^{2}=4 a(y-\beta)$ can be put in the form $y=1 x^{2}+m x+n$.
29. We use the following notation in this chapter

$$
S \equiv y^{2}-4 a x, S_{1} \equiv y y_{1}-2 a\left(x+x_{1}\right), S_{11}=S\left(x_{1}, y_{1}\right) \equiv y_{1}^{2}-4 a x_{1}, S_{12} \equiv y_{1} y_{2}-2 a\left(x_{1}+x_{2}\right) .
$$

30. Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point and $\mathrm{S} \equiv \mathrm{y}^{2}-4 \mathrm{ax}=0$ be a parabola. Then
i) P lies on the parabola $\Leftrightarrow S_{11}=0$
ii) P Lies inside the parabola $\Leftrightarrow \mathrm{S}_{11}<0$
iii) P lies outside the parabola $\Leftrightarrow S_{11}>0$
31. The equation of the chord joining the two points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ on the parabola $S=0$ is $\mathrm{S}_{1}+\mathrm{S}_{2}=\mathrm{S}_{12}$.
32. Let $\mathrm{S}=0$ be a parabola and P be a point on the parabola. Let Q be any other point on the parabola. If the secant line $\overleftrightarrow{\mathrm{PQ}}$ approaches to the same limiting position as Q moves along the curve and approaches to P form either side, then the limiting position is called a tangent line or tangent to the parabola at P . The point P is called point of contact of the tangent to the parabola.
33. If $\mathrm{L}=0$ is a tangent to the parabola $\mathrm{S}=0$ at P , then we say that the line $\mathrm{L}=0$ touches the parabola $S=0$ at P.
34. The equation of the tangent to the parabola $\mathrm{S}=0$ at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}=0$.
35. Let $\mathrm{S}=0$ be a parabola and P be a point on the parabola $\mathrm{S}=0$. The line passing through P and perpendicular to the tangent of $S=0$ at P is called the normal to the parabola $S=0$ at P.
36. The equation of the normal to the parabola $y^{2}=4 a x$ at $P\left(x_{1}, y_{1}\right)$ is $y_{1}\left(x-x_{1}\right)+2 a\left(y-y_{1}\right)=0$.
37. The condition that the line $y=m x+c$ may be a tangent to the parabola $y^{2}=4 a x$ is $c=a / m$.
38. The equation of a tangent to the parabola $y^{2}=4 a x$ may be taken as $y=m x+a / m$. The point of contact is ($a / m^{2}, 2 a / m$).
39. If m_{1}, m_{2} are the slopes of the tangents of the parabola $y^{2}=4 a x$ through an external point $P\left(x_{1}, y_{1}\right)$, then $m_{1}+m_{2}=y_{1} / x_{1}, m_{1} m_{2}=a / x_{1}$.
40. The line joining the points of contact of the tangent to a parabola $S=0$ drawn from an external point P is called chord of contact of P with respect to the parabola $S=0$.
41. The equation to the chord of contact of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the parabola $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
42. The locus of the point of intersection of the tangents to the parabola $S=0$ brawn at the extremities of the chord passing through a point P is a straight line $L=0$, called the polar of P with respect to the parabola $S=0$. The point P is called the pole of the line $\mathrm{L}=0$ with respect to the parabola $\mathrm{S}=0$.
43. The equation of the polar of the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the parabola $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
44. If P is an external point of the parabola $S=0$, then the polar of P meets the parabola in two points and the polar becomes the chord of contact of P .
45. If P lies on the parabola $\mathrm{S}=0$, then the polar of P becomes the tangent at P to the parabola $\mathrm{S}=0$.
46. If P is an internal point of the parabola $S=0$, then the polar of P does not meet the parabola.
47. The pole of the line $l x+m y+n=0(l \neq 0)$ with respect to the parabola $y^{2}=4 a x$ is $(n / l,-2 a \mathrm{am} / l)$.
48. Two points P and Q are said to be conjugate points with respect to the parabola $\mathrm{S}=0$ if the polar of P with respect to $\mathrm{S}=0$ passes through Q .
49. The condition for the points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ to be conjugate with respect to the parabola $\mathrm{S}=$ 0 is $\mathrm{S}_{12}=0$.
50. Two lines $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0$ are said to be conjugate lines with respect to the parabola $\mathrm{S}=0$ if the pole of $\mathrm{L}_{1}=0$ lie on $\mathrm{L}_{2}=0$.
51. The condition for the lines $l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$ and $l_{2} \mathrm{X}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$ to be conjugate with respect to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is $l_{1} \mathrm{n}_{2}+l_{2} \mathrm{n}_{1}=2 \mathrm{am}_{1} \mathrm{~m}_{2}$.
52. The equation of the chord of the parabola $\mathrm{S}=0$ having $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ as its midpoint is $\mathrm{S}_{1}=\mathrm{S}_{11}$.
53. The equation to the pair of tangents to the parabola $\mathrm{S}=0$ from $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}{ }^{2}=\mathrm{S}_{11} \mathrm{~S}$.
54. A point (x, y) on the parabola $y^{2}=4 a x$ can be represented as $x=\mathrm{at}^{2}, \mathrm{y}=2$ at in a single parameter t . These equations are called parametric equations of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$. The point (at ${ }^{2}, 2 a t$) is simply denoted by t.
55. The equation of the chord joining the points t_{1} and t_{2} on the parabola $y^{2}=4 a x$ is $y\left(t_{1}+t_{2}\right)=2 x$ $+2 \mathrm{at}_{1} \mathrm{t}_{2}$.
56. If the chord joining the points t_{1} and t_{2} on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is a focal chord then $\mathrm{t}_{1} \mathrm{t}_{2}=-1$.
57. The equation of the tangent to the parabola $y^{2}=4 a x$ at the point ' t ' is $y t=x+a t^{2}$.
58. The point of intersection of the tangents to the parabola $y^{2}=4 a x$ at the points t_{1} and t_{2} is ($a t_{1} t_{2}, a\left[t_{1}+t_{2}\right]$).
59. The equation of the normal to the parabola $y^{2}=4 a x$ at the point t is $y+x t=2 a t+a t^{3}$.
60. Three normals can be drawn from a point $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$.
61. If t_{1}, t_{2}, t_{3} are the feet of the three normals drawn from point $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ then $\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0, \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{3} \mathrm{t}_{1}=\frac{2 \mathrm{a}-\mathrm{x}_{1}}{\mathrm{a}}, \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=\frac{\mathrm{y}_{1}}{\mathrm{a}}$.
62. If the normals at t_{1} and t_{2} to the parabola meet on the parabola, then $\mathrm{t}_{1} \mathrm{t}_{2}=2$.
63. For the parabola $x=l y^{2}+m y+n$,

Vertex $=\left(n-\frac{m^{2}}{4 l}, \frac{-m}{2 l}\right)$, Focus $=\left(n+\frac{1-m^{2}}{4 l}, \frac{-m}{2 l}\right)$,
Latusrectum $=\frac{1}{l}$, axis is $\mathrm{y}+\frac{\mathrm{m}}{2 l}=0$, directrix is $\mathrm{x}=\mathrm{n}+\frac{1-\mathrm{m}^{2}}{4 l}$.
64. For the parabola $y=1 x^{2}+m x+n$,

Vertex $=\left(-\frac{m}{2 l}, n-\frac{m^{2}}{4 l}\right)$,Focus $=\left(\frac{-m}{2 l}, n+\frac{1-m^{2}}{4 l}\right)$,
Latusrectum $=\frac{1}{l}$, axis is $\mathrm{y}+\frac{\mathrm{m}}{2 l}=0$, directrix is $\mathrm{y}=\mathrm{n}+\frac{1-\mathrm{m}^{2}}{4 l}$.
65. The condition that the line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ may be a tangent to the parabola
i) $y^{2}=4 a x$ is $\mathrm{am}^{2}=\ln$ ii) $x^{2}=4$ ay is a $l^{2}=m n$.
66. The pole of the line $l x+m y+n=0(m \neq 0)$ with respect to the parabola
i) $\mathrm{y}^{2}=4 \mathrm{ax}$ is $\left(\frac{\mathrm{n}}{l},-\frac{2 \mathrm{am}}{l}\right)$ ii) $\mathrm{x}^{2}=4$ ay is $\left(-\frac{2 \mathrm{a} l}{\mathrm{~m}}, \frac{\mathrm{n}}{\mathrm{m}}\right)$
67. The length of the chord joining t_{1}, t_{2} on $y^{2}=4 a x$ is $a\left|t_{1}-t_{2}\right| \sqrt{\left(t_{1}+t_{2}\right)^{2}+4}$.
68. The length of the focal chord through the point t on the parabola $y^{2}=4 a x$ is $a(t+1 / t)^{2}$.
69. If the normal at t_{1} on the parabola $y^{2}=4 a x$ meets it again at t_{2} then $t_{2}=-t_{1}-2 / t_{1}$.
70. If the normal at t on the parabola $y^{2}=4 a x$ subtends a right angle
i) at its focus then $t= \pm 2$
ii) at its vertex then $t= \pm \sqrt{2}$
71. The orthocentre of the triangle formed by three tangents of a parabola lies on the directrix
72. The angle between the pair of tangents drawn from ($\mathrm{x}_{1}, \mathrm{y}_{1}$) to the parabola $\mathrm{S} \equiv \mathrm{y}^{2}-4 \mathrm{ax}=0$ is $\tan ^{-1} \frac{\sqrt{S_{11}}}{x_{1}+a}$

TABLES FORM OF CONIC SECTION : (FORMULAS)

PARABOLA								
S.N 0	Equation	Vertex	Focus	Latus rectum	Axis	Tangent at vertex	Directix	Equation of L.R.
i)	$\mathrm{y}^{2}=4 \mathrm{ax}$	$(0,0)$	$(\mathrm{a}, 0)$	$4\|\mathrm{a}\|$	$\mathrm{y}=0$	$\mathrm{x}=0$	$\mathrm{x}+\mathrm{a}=0$	$\mathrm{x}-\mathrm{a}=0$
ii)	$(\mathrm{y}-\mathrm{k})^{2}=4 \mathrm{a}(\mathrm{x}-$ $\mathrm{h})$	(h, k)	$(\mathrm{a}+\mathrm{h}, \mathrm{k})$	$4\|\mathrm{a}\|$	$\mathrm{y}-\mathrm{k}=0$	$\mathrm{x}-\mathrm{h}=0$	$\mathrm{x}-\mathrm{h}$ $+\mathrm{a}=0$	$\mathrm{x}-\mathrm{h}-\mathrm{a}=$ 0
iii)	$(\mathrm{x}-\mathrm{h})^{2}=4 \mathrm{a}(\mathrm{y}-$ $\mathrm{k})$	(h, k)	$(\mathrm{h}, \mathrm{k}+\mathrm{a})$	$4\|\mathrm{a}\|$	$\mathrm{x}-\mathrm{h}=0$	$\mathrm{y}-\mathrm{k}=0$	$\mathrm{y}-\mathrm{k}+$ $\mathrm{a}=0$	$\mathrm{y}-\mathrm{k}-\mathrm{a}=$ 0

Horizontal ellipse $(\mathbf{a}>\mathbf{b}) \mathbf{e}=\frac{\sqrt{a^{2}-b^{2}}}{a}$ or $\sqrt{1-\frac{b^{2}}{a^{2}}}$								
Equation	Centre	Focii	Directricies	Major axis	$\begin{gathered} \text { Min } \\ \text { or } \\ \text { axis } \end{gathered}$	Latus rectum	Verticies	Property
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$(0,0)$	$\left(\pm \sqrt{a^{2}-b^{2}}, 0\right)$	$\left(\sqrt{a^{2}-b^{2}}\right) x= \pm a^{2}$	$\mathrm{y}=0$	$\mathrm{x}=$ 0	$2 \frac{b^{2}}{a}$	$\begin{aligned} & (\pm \mathrm{a}, 0) \\ & (0, \pm \mathrm{b}) \end{aligned}$	$\begin{gathered} S P+S^{1} P \\ =2 a \end{gathered}$
Vertical ellipse $(\mathbf{a}>\mathbf{b}) \mathbf{e}=\sqrt{1-\frac{a^{2}}{b^{2}}}$								
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$(0,0)$	$\left(0, \pm \sqrt{b^{2}-a^{2}}\right)$	$\left(\sqrt{b^{2}-a^{2}}\right) y= \pm b^{2}$	$\mathrm{x}=0$	$\mathrm{y}=0$	$2 \frac{a^{2}}{b}$	$\begin{aligned} & (\pm \mathrm{a}, 0) \\ & (0, \pm \mathrm{b}) \end{aligned}$	$\begin{gathered} \mathrm{SP}+\mathrm{S}^{1} \mathrm{P} \\ =2 \mathrm{~b} \end{gathered}$

Hyperbola $e^{2}=1+\frac{b^{2}}{a^{2}}$								
Equation	Centre	Focii	Directricies	Major axis	Minor axis	Latus rectu m	Verticie s	Property
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$(0,0)$	$\left(\pm \sqrt{a^{2}+b^{2}}, 0\right)$	$\left(\sqrt{\left.a^{2}+b^{2}\right) y= \pm a^{2}}\right.$	$y=0$	$x=0$	$2 \frac{b^{2}}{a}$	$(\pm a, 0)$ $(0, \pm b)$	$\left\|S P-S^{1} P\right\|$ $=2 a$

The equation of the tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, the equation of the chord of contact of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and polar of $\left(\mathrm{x}_{1}\right.$, y_{1}) with respect to $S=0$ is $S_{1}=0$.

Equation of the tangent, chord of contact, and the polar at $\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}\right)$		
Curve	Equation	$\mathbf{S}_{\mathbf{1}}=\mathbf{0}$
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\mathrm{yy}_{1}=2 \mathrm{ax}+2 \mathrm{ax}_{1}$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\frac{\mathrm{yy}}{\mathrm{b}_{1}}=1$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$

Parametric equations:

Curve	Equation	Parametric point	Parametric equation
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\mathrm{t}=\left(\mathrm{at}{ }^{2}, 2 \mathrm{at}\right)$	$\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2 \mathrm{at}$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\theta=(\operatorname{acos} \theta, b \sin \theta)$	$\mathrm{x}=\operatorname{a\operatorname {cos}\theta ,\mathrm {y}=\mathrm {b}\operatorname {sin}\theta }$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\theta=(\operatorname{asec} \theta, b \tan \theta)$	$\mathrm{x}=\operatorname{asec} \theta, \mathrm{y}=\mathrm{btan} \theta$

Equation of the chord joining two parametric points :

Curve	Equation	Point	Equation of the chord
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\mathrm{t}_{1}, \mathrm{t}_{2}$	$\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{y}-2 \mathrm{x}=2 \mathrm{at}_{1} \mathrm{t}_{2}$
Ellipse	$\frac{x^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	α, β	$\frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$
Hyperbola	$\frac{x^{2}}{\mathrm{a}^{2}}-\frac{y^{2}}{\mathrm{~b}^{2}}=1$	α, β	$\frac{x}{a} \cos \left(\frac{\alpha-\beta}{2}\right)+\frac{\mathrm{y}}{\mathrm{b}} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha+\beta}{2}\right)$

Equation of the tangent at the parametric point :

Curve	Equation	Point	Equation of the tangent	Slope
Parabola	$y^{2}=4 a x$	t	$y=\frac{x}{t}+a t$	$\frac{1}{t}$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	θ	$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$	$\frac{-b \sin \theta}{a \sin \theta}$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	θ	$\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$	$\frac{b}{a \sin \theta}$

Equation of the normal at the parametric point :

Curve	Equation	Point	Equation of the Normal	Slope
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	t	$\mathrm{Y}+\mathrm{tx}=2 \mathrm{at}+\mathrm{at}+3$	-t
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	θ	$\frac{\mathrm{ax}}{\cos \theta}-\frac{\mathrm{by}}{\sin \theta}=\mathrm{a}^{2}-\mathrm{b}^{2}$	$\frac{\mathrm{a} \sin \theta}{\mathrm{b} \cos \theta}$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	θ	$\frac{\mathrm{ax}}{\cos \theta}+\frac{\mathrm{by}}{\sin \theta}=\mathrm{a}^{2}+\mathrm{b}^{2}$	$\frac{-\mathrm{a} \sin \theta}{\mathrm{b}}$

Condition for tangency and the point of contact $(\mathbf{y}=\mathbf{m x}+\mathbf{c})$:

Curve	Equation	Condition for tangency	Point of contact
Parabola	$y^{2}=4 a x$	$c=\frac{a}{m}$	$\left(\frac{c}{m}, \frac{2 a}{m}\right)$ or $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$c^{2}=a^{2} m^{2}+b^{2}$	$\left(\frac{-a^{2} m}{c}, \frac{b^{2}}{c}\right)$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$c^{2}=a^{2} m^{2}-b^{2}$	$\left(\frac{-a^{2} m}{c}, \frac{-b^{2}}{c}\right)$

Condition that he line lx $+\mathrm{my}+\mathrm{n}=0$ is a tangent :		
Curve	Equation	Condition of tangency
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\ln =\mathrm{am}^{2}$
Parabola	$\mathrm{x}^{2}=4 \mathrm{ay}$	$\mathrm{mn}=\mathrm{al}^{2}$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\mathrm{a}^{2} l^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}=\mathrm{n}^{2}$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\mathrm{a}^{2} l^{2}-\mathrm{b}^{2} \mathrm{~m}^{2}=\mathrm{n}^{2}$

Equation of the tangent is of form :

Curve	Equation	Equation of the tangent
Parabola	$y^{2}=4 a x$	$Y=m x+\frac{a}{m}$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$

Equation from which the slopes of the tangents through $\left(x_{1}, y_{1}\right)$ are given		
Curve	Equation	Condition of tangency
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\mathrm{m}^{2} \mathrm{x}_{1}-m y_{1}+\mathrm{a}=0$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\mathrm{~m}^{2}\left(\mathrm{x}_{1}{ }^{2}-\mathrm{a}^{2}\right)-2 \mathrm{x}_{1} \mathrm{y}_{1} \mathrm{~m}+\mathrm{y}_{1}{ }^{2}-\mathrm{b}^{2}=0$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\mathrm{~m}^{2}\left(\mathrm{x}_{1}{ }^{2}-\mathrm{a}^{2}\right)-2 \mathrm{x}_{1} \mathrm{y}_{1} m+\mathrm{y}_{1}{ }^{2}+\mathrm{b}^{2}=0$

The equation of the chord having the mid point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) is		
Curve	Equation	Equation of the chord
Parabola	$y^{2}=4 a x$	$\mathrm{yy}_{1}-2 \mathrm{ax}_{1}=\mathrm{y}_{1}{ }^{2}-2 \mathrm{ax}_{1}$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\frac{x x_{1}}{a^{2}}+\frac{y_{y_{1}}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}$
The condition that the lines $l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$ and $l_{2} \mathrm{x}+\mathrm{x}_{2} \mathrm{y}+\mathrm{n}_{2}=0$ may be conjugate with respect to		
Curve	Equation	Condition
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$\mathrm{n}_{1} \mathrm{l}_{2}+\mathrm{n}_{2} \mathrm{l}_{1}=2 \mathrm{am}_{1} \mathrm{~m}_{2}$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\mathrm{a}^{2} l_{1} l_{2}+\mathrm{b}^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{n}_{1} \mathrm{n}_{2}$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\mathrm{a}^{2} l_{1} l_{2}-\mathrm{b}^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{n}_{1} \mathrm{n}_{2}$

The locus of the point of intersection of the perpendicular tangents is		
Curve	Equation	Equation of the locus
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	Directrix $-\mathrm{x}+\mathrm{a}=0$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	Director circle $-\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Hyperbola	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	Director circle $-\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

The locus of the points whose chords of contact subtend a right angle at the origin is		
Curve	Equation	Equation of the locus
Parabola	$y^{2}=4 a x$	$x+4 a=0$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}$

Ends of latus rectum :		
Curve	Equation	Equation of the locus
Parabola	$\mathrm{y}^{2}=4 \mathrm{ax}$	$(\mathrm{a}, 2 \mathrm{a}),(\mathrm{a},-2 \mathrm{a})$
Ellipse	$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\left(\pm a \mathrm{a}, \pm \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)$
Hyperbola	$\frac{x^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$	$\left(\pm a \mathrm{ae}, \pm \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)$

For any conic, the tangents at the end of Latus rectum, the corresponding directrix and the axis are concurrent.

Curve	Equation	L	\mathbf{L}^{1}	Point of concurrency
Parabola	$y^{2}=4 a x$	(a, 2a)	(a, -2a)	$\mathrm{z}=(-\mathrm{a}, 0)$
Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\left(a e, \frac{b^{2}}{a}\right)$	$\left(a e, \frac{-b^{2}}{a}\right)$	$z=\left(\frac{a}{e}, 0\right)$
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\left(\mathrm{ae}, \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)$	(ae, $\left.\frac{-\mathrm{b}^{2}}{\mathrm{a}}\right)$	$z=\left(\frac{a}{e}, 0\right)$

