PARABOLA

- 1. The locus of a point which moves in a plane so that its distance from a fixed point bears a constant ratio to its distance from a fixed straight line is called a *conic section* or *conic*. The fixed point is called *focus*, the fixed straight line is called *directrix* and the constant ratio 'e' is called *eccentricity* of the conic.
- 2. If e = 1, then the conic is called a *parabola*.
- 3. If e < 1, then the conic is called an *ellipse*.
- 4. If e > 1, then the conic is called a *hyperbola*.
- 5. The equation of a conic is of the form $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.
- 6. A line L = 0 passing through the focus of a conic is said to be the *principal axis* of the conic if it is perpendicular to the directrix of the conic.
- 7. The points of intersection of a conic and its principal axis are called *vertices* of the conic.
- 8. If a conic has only one vertex then its centre coincides with the vertex.
- 9. A conic has at most two vertices.
- 10. The midpoint of the line segment joining the vertices of a conic is called *centre* of the conic.
- 11. A conic is said to be in the *standard form* if the principal axis of the conic is x-axis and the centre of the conic is the origin.
- 12. The equation of a parabola in the standard form is $y^2 = 4ax$.
- 13. For the parabola $y^2 = 4ax$, vertex=(0, 0), focus=(a, 0) and the equation of the directrix is x+a=0.
- 14. If we rotate the axes 90° in the clockwise direction then the equation $y^2 = 4ax$ of a parabola is transformed to $x^2 = 4ay$.
- 15. For the parabola $x^2 = 4ay$, vertex = (0, 0), focus = (0, a), the equation of the directrix is y+a = 0 and the equation of the principal axis is x = 0 (y-axis).
- 16. A point (x_1, y_1) is said to be an
 - i) *external point* of the parabola $y^2 = 4ax$ if $y_1^2 4ax_1 > 0$
 - ii) *internal point* of the parabola $y^2 = 4ax$ if $y_1^2 4ax_1 < 0$.
- 17. A chord passing through a point P on the parabola and perpendicular to the principal axis of the parabola is called the *double ordinate* of the P.
- 18. A chord of the parabola passing through the focus is called a *focal chord*.
- 19. A focal chord of a parabola perpendicular to the principal axis of the parabola is called *latus rectum*. If the latus rectum meets the parabola in L and L', then LL' is called *length of the latus rectum*.

- 20. The length of the latus rectum of the parabola $y^2 = 4ax$ is 4|a|.
- 21. If P is a point on the parabola with focus S, then SP is called *focal distance* of P.
- 22. The focal distance of $P(x_1, y_1)$ on the parabola $y^2 = 4ax$ is $|x_1 + a|$.
- 23. The equation of the parabola whose axis is parallel to x-axis and vertex at (α, β) is $(y \beta)^2 = \pm 4a(x \alpha), (a > 0)$.
- 24. For the parabola $(y \beta)^2 = \pm 4a(x \alpha)$, the focus is $(\alpha \pm a, \beta)$ and the equation to the directrix is $x = \alpha \mp a$.
- 25. The equation $(y \beta)^2 = \pm 4a(x \alpha)$ can be put in the form $x = ly^2 + my + n$.
- 26. The equation of the parabola whose axis is parallel to y-axis and vertex at (α, β) is $(x \alpha)^2 = \pm 4a(y \beta)$
- 27. For the parabola $(x \alpha)^2 = \pm 4a(y \beta)$, the focus is $(\alpha, \beta \pm a)$, the equation of the directrix is $y = \beta \mp a$.
- 28. The equation $(x \alpha)^2 = 4a(y \beta)$ can be put in the form $y = lx^2 + mx + n$.
- 29. We use the following notation in this chapter

$$S \equiv y^2 - 4ax$$
, $S_1 \equiv yy_1 - 2a(x+x_1)$, $S_{11} = S(x_1, y_1) \equiv y_1^2 - 4ax_1$, $S_{12} \equiv y_1y_2 - 2a(x_1 + x_2)$.

- 30. Let $P(x_1, y_1)$ be a point and $S \equiv y^2 4ax = 0$ be a parabola. Then
 - i) P lies on the parabola \Leftrightarrow S₁₁ = 0
 - ii) P Lies inside the parabola \Leftrightarrow S₁₁ < 0
 - iii) P lies outside the parabola \Leftrightarrow S₁₁ > 0
- 31. The equation of the chord joining the two points $A(x_1, y_1)$, $B(x_2, y_2)$ on the parabola S = 0 is $S_1 + S_2 = S_{12}$.
- 32. Let S=0 be a parabola and P be a point on the parabola. Let Q be any other point on the parabola. If the secant line \overrightarrow{PQ} approaches to the same limiting position as Q moves along the curve and approaches to P form either side, then the limiting position is called a *tangent line* or *tangent* to the parabola at P. The point P is called *point of contact* of the tangent to the parabola.
- 33. If L = 0 is a tangent to the parabola S = 0 at P, then we say that the line L = 0 touches the parabola S = 0 at P.
- 34. The equation of the tangent to the parabola S = 0 at $P(x_1, y_1)$ is $S_1 = 0$.
- 35. Let S = 0 be a parabola and P be a point on the parabola S = 0. The line passing through P and perpendicular to the tangent of S = 0 at P is called the *normal* to the parabola S = 0 at P.
- 36. The equation of the normal to the parabola $y^2 = 4ax$ at $P(x_1, y_1)$ is $y_1(x x_1) + 2a(y y_1) = 0$.
- 37. The condition that the line y = mx + c may be a tangent to the parabola $y^2 = 4ax$ is c = a/m.

- 38. The equation of a tangent to the parabola $y^2 = 4ax$ may be taken as y = mx + a/m. The point of contact is $(a/m^2, 2a/m)$.
- 39. If m_1 , m_2 are the slopes of the tangents of the parabola $y^2 = 4ax$ through an external point P (x₁, y₁), then $m_1 + m_2 = y_1/x_1$, $m_1m_2 = a/x_1$.
- 40. The line joining the points of contact of the tangent to a parabola S = 0 drawn from an external point P is called *chord of contact* of P with respect to the parabola S = 0.
- 41. The equation to the chord of contact of $P(x_1, y_1)$ with respect to the parabola S = 0 is $S_1 = 0$.
- 42. The locus of the point of intersection of the tangents to the parabola S = 0 brawn at the extremities of the chord passing through a point P is a straight line L = 0, called the *polar* of P with respect to the parabola S = 0. The point P is called the *pole* of the line L = 0 with respect to the parabola S = 0.
- 43. The equation of the polar of the point $P(x_1, y_1)$ with respect to the parabola S = 0 is $S_1 = 0$.
- 44. If P is an external point of the parabola S = 0, then the polar of P meets the parabola in two points and the polar becomes the chord of contact of P.
- 45. If P lies on the parabola S = 0, then the polar of P becomes the tangent at P to the parabola S=0.
- 46. If P is an internal point of the parabola S = 0, then the polar of P does not meet the parabola.
- 47. The pole of the line lx + my + n = 0 ($l \neq 0$) with respect to the parabola $y^2 = 4ax$ is (n/l,-2am/l).
- 48. Two points P and Q are said to be *conjugate points* with respect to the parabola S = 0 if the polar of P with respect to S = 0 passes through Q.
- 49. The condition for the points $P(x_1, y_1)$, $Q(x_2, y_2)$ to be conjugate with respect to the parabola S = 0 is $S_{12} = 0$.
- 50. Two lines $L_1 = 0$, $L_2 = 0$ are said to be *conjugate lines* with respect to the parabola S = 0 if the pole of $L_1 = 0$ lie on $L_2 = 0$.
- 51. The condition for the lines $l_1x + m_1y + n_1 = 0$ and $l_2x + m_2y + n_2 = 0$ to be conjugate with respect to the parabola $y^2 = 4ax$ is $l_1n_2 + l_2n_1 = 2am_1m_2$.
- 52. The equation of the chord of the parabola S = 0 having $P(x_1, y_1)$ as its midpoint is $S_1 = S_{11}$.
- 53. The equation to the pair of tangents to the parabola S =0 from $P(x_1, y_1)$ is $S_1^2 = S_{11}S$.
- 54. A point (x, y) on the parabola $y^2 = 4ax$ can be represented as $x=at^2$, y = 2at in a single parameter t. These equations are called *parametric equations* of the parabola $y^2 = 4ax$. The point $(at^2, 2at)$ is simply denoted by t.
- 55. The equation of the chord joining the points t_1 and t_2 on the parabola $y^2 = 4ax$ is $y(t_1 + t_2) = 2x + 2at_1t_2$.
- 56. If the chord joining the points t_1 and t_2 on the parabola $y^2 = 4ax$ is a focal chord then $t_1t_2 = -1$.
- 57. The equation of the tangent to the parabola $y^2 = 4ax$ at the point 't' is $yt = x + at^2$.

- 58. The point of intersection of the tangents to the parabola $y^2 = 4ax$ at the points t_1 and t_2 is $(at_1t_2, a[t_1+t_2])$.
- 59. The equation of the normal to the parabola $y^2 = 4ax$ at the point t is $y + xt = 2at + at^3$.
- 60. Three normals can be drawn from a point (x_1, y_1) to the parabola $y^2 = 4ax$.
- 61. If t_1 , t_2 , t_3 are the feet of the three normals drawn from point (x_1, y_1) to the parabola $y^2 = 4ax$ then $t_1 + t_2 + t_3 = 0$, $t_1t_2 + t_2t_3 + t_3t_1 = \frac{2a - x_1}{a}$, $t_1t_2t_3 = \frac{y_1}{a}$.
- 62. If the normals at t_1 and t_2 to the parabola meet on the parabola, then $t_1t_2 = 2$.
- 63. For the parabola $x = ly^2 + my + n$, $Vertex = \left(n - \frac{m^2}{4l}, \frac{-m}{2l}\right), Focus = \left(n + \frac{1 - m^2}{4l}, \frac{-m}{2l}\right),$

Latusrectum = $\frac{1}{l}$, axis is y+ $\frac{m}{2l}$ =0, directrix is x=n+ $\frac{1-m^2}{4l}$.

64. For the parabola $y = lx^2 + mx + n$, $Vertex = \left(-\frac{m}{2l}, n - \frac{m^2}{4l}\right), Focus = \left(\frac{-m}{2l}, n + \frac{1 - m^2}{4l}\right),$

Latusrectum = $\frac{1}{l}$, axis is y + $\frac{m}{2l}$ =0, directrix is y=n+ $\frac{1-m^2}{4l}$.

- 65. The condition that the line lx + my + n = 0 may be a tangent to the parabola i) $y^2 = 4ax$ is $am^2 = ln$ ii) $x^2 = 4ay$ is a $l^2 = mn$.
- 66. The pole of the line lx+my + n = 0 (m $\neq 0$) with respect to the parabola

i)
$$y^2 = 4ax$$
 is $\left(\frac{n}{l}, -\frac{2am}{l}\right)$ ii) $x^2 = 4ay$ is $\left(-\frac{2al}{m}, \frac{n}{m}\right)$

- 67. The length of the chord joining t_1 , t_2 on $y^2 = 4ax$ is $a | t_1 t_2 | \sqrt{(t_1 + t_2)^2 + 4}$.
- 68. The length of the focal chord through the point t on the parabola $y^2 = 4ax$ is $a(t + 1/t)^2$.
- 69. If the normal at t_1 on the parabola $y^2 = 4ax$ meets it again at t_2 then $t_2 = -t_1 2/t_1$.
- 70. If the normal at t on the parabola $y^2 = 4ax$ subtends a right angle

i) at its focus then $t = \pm 2$ ii) at its vertex then $t = \pm \sqrt{2}$

71. The orthocentre of the triangle formed by three tangents of a parabola lies on the directrix

72. The angle between the pair of tangents drawn from (x_1, y_1) to the parabola $S \equiv y^2 - 4ax = 0$ is $\tan^{-1} \frac{\sqrt{S_{11}}}{\sqrt{S_{11}}}$

$$\tan^{-1} \frac{\sqrt{1}}{x_1 + a}$$

	PARABOLA							
S.N o	Equation	Vertex	Focus	Latus rectum	Axis	Tangent at vertex	Directix	Equation of L.R.
i)	$y^2 = 4ax$	(0, 0)	(a, 0)	4 a	y = 0	$\mathbf{x} = 0$	x + a = 0	x - a = 0
ii)	$(y-k)^2 = 4a(x-h)$	(h, k)	(a + h, k)	4 a	y – k=0	x- h=0	x- h +a=0	xha = 0
iii)	$(x-h)^2 = 4a(y-k)$	(h, k)	(h, k + a)	4 a	x-h=0	y- k=0	y–k + a=0	y-k-a = 0

TABLES FORM OF CONIC SECTION : (FORMULAS)

	Horizontal ellipse (a > b) $e = \frac{\sqrt{a^2 - b^2}}{a}$ or $\sqrt{1 - \frac{b^2}{a^2}}$							
Equation	Centre	Focii	Directricies	Major axis	Min or axis	Latus rectum	Verticies	Property
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(0, 0)	$(\pm \sqrt{a^2 - b^2}, 0)$	$(\sqrt{a^2 - b^2})x = \pm a^2$	y = 0	x = 0	$2\frac{b^2}{a}$	(±a, 0) (0, ±b)	$SP+S^{1}P$ =2a
	Vertical ellipse (a > b) $e = \sqrt{1 - \frac{a^2}{b^2}}$							
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(0, 0)	$(0,\pm\sqrt{b^2-a^2})$	$(\sqrt{b^2 - a^2})y = \pm b^2$	x = 0	y = 0	$2\frac{a^2}{b}$	(± a, 0) (0, ± b)	$SP+S^{1}P$ =2b

	Hyperbola $e^2 = 1 + \frac{b^2}{a^2}$							
Equation	Centre	Focii	Directricies	Major axis	Minor axis	Latus rectu m	Verticie s	Property
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(0, 0)	$(\pm\sqrt{a^2+b^2},0)$	$(\sqrt{a^2 + b^2})y = \pm a^2$	y = 0	x = 0	$2\frac{b^2}{a}$	(± a, 0) (0, ± b)	$ SP-S^{1}P $ =2a

The equation of the tangent at (x_1, y_1) , the equation of the chord of contact of (x_1, y_1) and polar of (x_1, y_1) with respect to S = 0 is $S_1 = 0$.

Parabola

Equation of the tangent, chord of contact, and the polar at (x_1, y_1)				
Curve	Equation	$S_1 = 0$		
Parabola	$y^2 = 4ax$	$yy_1 = 2ax + 2ax_1$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$		

Parametric equations :

Curve	Equation	Parametric point	Parametric equation
Parabola	$y^2 = 4ax$	$t = (at^2, 2at)$	$x = at^2$, $y = 2at$
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\theta = (a\cos\theta, b\sin\theta)$	$x = a\cos\theta, y = b\sin\theta$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\theta = (asec\theta, btan\theta)$	$x = asec\theta, y = btan\theta$

Equation of the chord joining two parametric points :

Curve	Equation	Point	Equation of the chord
Parabola	$y^2 = 4ax$	t ₁ , t ₂	$(t_1 + t_2)y - 2x = 2at_1t_2$
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	α, β	$\frac{x}{a}\cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	α, β	$\frac{x}{a}\cos\left(\frac{\alpha-\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha+\beta}{2}\right)$

Equation of the tangent at the parametric point :

Curve	Equation	Point	Equation of the tangent	Slope
Parabola	$y^2 = 4ax$	t	$y=\frac{x}{t}+at$	$\frac{1}{t}$
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	θ	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$	$\frac{-b\sin\theta}{a\sin\theta}$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	θ	$\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$	$\frac{b}{a\sin\theta}$

Curve	Equation	Point	Equation of the Normal	Slope
Parabola	$y^2 = 4ax$	t	Y+ tx = 2at + at + 3	- t
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	θ	$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$	$\frac{a\sin\theta}{b\cos\theta}$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	θ	$\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = a^2 + b^2$	$\frac{-a\sin\theta}{b}$

Equation of the normal at the parametric point :

Condition for tangency and the point of contact (y = mx + c):

Curve	Equation	Condition for tangency	Point of contact
Parabola	$y^2 = 4ax$	$c = \frac{a}{m}$	$\left(\frac{c}{m},\frac{2a}{m}\right)$ or $\left(\frac{a}{m^2},\frac{2a}{m}\right)$
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$c^2 = a^2 m^2 + b^2$	$\left(\frac{-a^2m}{c},\frac{b^2}{c}\right)$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$c^2 = a^2m^2 - b^2$	$\left(\frac{-a^2m}{c},\frac{-b^2}{c}\right)$

Condition that he line $lx + my + n = 0$ is a tangent :				
Curve	Equation	Condition of tangency		
Parabola	$y^2 = 4ax$	$ln = am^2$		
Parabola	$x^2 = 4ay$	$mn = al^2$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$a^2 l^2 + b^2 m^2 = n^2$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$a^2l^2 - b^2m^2 = n^2$		

Equation of the tangent is of form :				
Curve	Equation	Equation of the tangent		
Parabola	$y^2 = 4ax$	$Y=mx + \frac{a}{m}$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y = mx \pm \sqrt{a^2m^2 + b^2}$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$y = mx \pm \sqrt{a^2 m^2 - b^2}$		

Equation from which the slopes of the tangents through (x_1,y_1) are given				
Curve	Equation	Condition of tangency		
Parabola	$y^2 = 4ax$	$m^2x_1 - my_1 + a = 0$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$m^{2}(x_{1}^{2}-a^{2})-2x_{1}y_{1}m+y_{1}^{2}-b^{2}=0$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$m^{2}(x_{1}^{2}-a^{2})-2x_{1}y_{1}m+y_{1}^{2}+b^{2}=0$		

The equation of the chord having the mid point (x_1, y_1) is				
Curve	Equation	Equation of the chord		
Parabola	$y^2 = 4ax$	$yy_1 - 2ax_1 = y_1^2 - 2ax_1$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2}$		
The condition that the lines $l_1x + m_1y + n_1 = 0$ and $l_2x + x_2y + n_2 = 0$ may be conjugate with respect to				
Curve	Equation	Condition		
Parabola	$y^2 = 4ax$	$n_1l_2 + n_2l_1 = 2am_1m_2$		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$a^2 l_1 l_2 + b^2 m_1 m_2 = n_1 n_2$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$a^2 l_1 l_2 - b^2 m_1 m_2 = n_1 n_2$		

The locus of the point of intersection of the perpendicular tangents is			
Curve	Equation	Equation of the locus	
Parabola	$y^2 = 4ax$	Directrix - x + a = 0	
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Director circle $-x^2+y^2 = a^2 + b^2$	
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Director circle $-x^2+y^2 = a^2 - b^2$	

The locus of the points whose chords of contact subtend a right angle at the origin is				
Curve	Equation	Equation of the locus		
Parabola	$y^2 = 4ax$	x + 4a = 0		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$		

Ends of latus rectum :				
Curve	Equation	Equation of the locus		
Parabola	$y^2 = 4ax$	(a, 2a), (a, – 2a)		
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\left(\pm ae,\pm \frac{b^2}{a}\right)$		
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\left(\pm ae, \pm \frac{b^2}{a}\right)$		

For any conic, the tangents at the end of Latus rectum, the corresponding directrix and the axis are concurrent.				
Curve	Equation	L	L^1	Point of concurrency
Parabola	$y^2 = 4ax$	(a, 2a)	(a, -2a)	z = (-a, 0)
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\left(ae, \frac{b^2}{a}\right)$	$\left(ae, \frac{-b^2}{a}\right)$	$z = \left(\frac{a}{e}, 0\right)$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\left(ae, \frac{b^2}{a}\right)$	$\left(ae, \frac{-b^2}{a}\right)$	$z = \left(\frac{a}{e}, 0\right)$