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PARABOLA

The locus of a point which moves in a plane so that its distance from a fixed point bears a
constant ratio to its distance from a fixed straight line is called a conic section or conic. The
fixed point is called focus, the fixed straight line is called directrix and the constant ratio ‘e’ is
called eccentricity of the conic.

If e = 1, then the conic is called a parabola.

If e < 1, then the conic is called an ellipse.

If e > 1, then the conic is called a hyperbola.

The equation of a conic is of the form ax? + 2hxy +by? + 2gx + 2fy + ¢ = 0.

A line L = 0 passing through the focus of a conic is said to be the principal axis of the conic if
it is perpendicular to the directrix of the conic.

The points of intersection of a conic and its principal axis are called vertices of the conic.

If a conic has only one vertex then its centre coincides with the vertex.

A conic has at most two vertices.

The midpoint of the line segment joining the vertices of a conic is called centre of the conic.

A conic is said to be in the standard form if the principal axis of the conic is x-axis and the
centre of the conic is the origin.

The equation of a parabola in the standard form is y* = 4ax.
For the parabola y® = 4ax, vertex=(0, 0), focus=(a, 0) and the equation of the directrix is x+a=0.

If we rotate the axes 90° in the clockwise direction then the equation y* = 4ax of a parabola is
transformed to x* = 4ay.

For the parabola x? = 4ay, vertex = (0, 0), focus = (0, a), the equation of the directrix is y+a = 0
and the equation of the principal axis is x = 0 (y-axis).

A point (Xq, y1) is said to be an
i) external point of the parabola y = 4ax if y,° — 4ax; >0
i) internal point of the parabola y* = 4ax if y,® — 4ax; < 0.

A chord passing through a point P on the parabola and perpendicular to the principal axis of the
parabola is called the double ordinate of the P.

A chord of the parabola passing through the focus is called a focal chord.

A focal chord of a parabola perpendicular to the principal axis of the parabola is called latus
rectum. If the latus rectum meets the parabola in L and L', then LL' is called length of the
latus rectum.
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The length of the latus rectum of the parabola y* = 4ax is 4]al.
If P is a point on the parabola with focus S, then SP is called focal distance of P.
The focal distance of P(xy, y1) on the parabola y* = 4ax is |x; + .

The equation of the parabola whose axis is parallel to x-axis and vertex at (o, B) is (y - B)* = +
4a(x -a), (a>0).

For the parabola (y — B)? = + 4a(x — a), the focus is (o+a,) and the equation to the directrix is
X =0 Fa.

The equation (y — B)* = +4a(x — ) can be put in the form x = ly* + my+ n.

The equation of the parabola whose axis is parallel to y-axis and vertex at (c, B) is (X — a))® = +

4a(y- B)

For the parabola (x - a)® = + 4a(y — B), the focus is (o, B £a), the equation of the directrix isy =
Bra.

The equation (x -&)? = 4a(y - B) can be put in the form y = Ix* + mx + n.

We use the following notation in this chapter

S=y? - 4ax, Sy = yy1 — 2a(x+x1), S11 = S(X1, Y1) = y1° — 4axy, S12 = Yy — 2a(X1 + Xo).
Let P(xy, y1) be a point and S = y? — 4ax = 0 be a parabola. Then

i) P lieson the parabola < S1; =0

ii) P Lies inside the parabola < S;; <0

iii) P lies outside the parabola < S;; >0

The equation of the chord joining the two points A(Xy, Y1), B(X2, y2) on the parabola S = 0 is
S+ S, = Sqo.

Let S= 0 be a parabola and P be a point on the parabola. Let Q be any other point on the

parabola. If the secant line PQ approaches to the same limiting position as Q moves along the
curve and approaches to P form either side, then the limiting position is called a tangent line or
tangent to the parabola at P. The point P is called point of contact of the tangent to the
parabola.

If L = 0 is a tangent to the parabola S = 0 at P, then we say that the line L = 0 touches the
parabola S=0 at P.

The equation of the tangent to the parabola S = 0 at P(xy, y1) is S1= 0.

Let S = 0 be a parabola and P be a point on the parabola S = 0. The line passing through P and
perpendicular to the tangent of S = 0 at P is called the normal to the parabola S =0 at P.

The equation of the normal to the parabola y? = 4ax at P(xy, y1) is y1(Xx — X1) +2a(y —y1) = 0.

The condition that the line y = mx + ¢ may be a tangent to the parabola y* = 4ax is ¢ = a/m.
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The equation of a tangent to the parabola y? = 4ax may be taken as y = mx + a/m. The point of
contact is (a/m? , 2a/m).

If my, m, are the slopes of the tangents of the parabola y? = 4ax through an external point
P (X1, Y1), then my + my = y1/Xq, mym, = a/X,.

The line joining the points of contact of the tangent to a parabola S = 0 drawn from an external
point P is called chord of contact of P with respect to the parabola S = 0.

The equation to the chord of contact of P(xy, y1) with respect to the parabola S =01is S; = 0.

The locus of the point of intersection of the tangents to the parabola S = 0 brawn at the
extremities of the chord passing through a point P is a straight line L = 0, called the polar of P
with respect to the parabola S =0. The point P is called the pole of the line L = 0 with respect to
the parabola S = 0.

The equation of the polar of the point P(xy, y1) with respect to the parabola S =0 is S;= 0.

If P is an external point of the parabola S = 0, then the polar of P meets the parabola in two
points and the polar becomes the chord of contact of P.

If P lies on the parabola S = 0, then the polar of P becomes the tangent at P to the parabola S=0.
If P is an internal point of the parabola S = 0, then the polar of P does not meet the parabola.
The pole of the line Ix + my + n = 0 (1 #0) with respect to the parabola y* = 4ax is (n/ ,-2am/ I).

Two points P and Q are said to be conjugate points with respect to the parabola S =0 if the
polar of P with respect to S = 0 passes through Q.

The condition for the points P(x1, Y1), Q(X2, Y2) to be conjugate with respect to the parabola S =
Ois S1o=0.

Two lines L; =0, L, = 0 are said to be conjugate lines with respect to the parabola S = 0 if the
pole of L; =0 lie on L, =0.

The condition for the lines I3x + myy + n; =0 and | X + myy + n, = 0 to be conjugate with
respect to the parabola y* = 4ax is I1n, + I,n; = 2am;ms.

The equation of the chord of the parabola S = 0 having P(xy, y1) as its midpoint is S; = Sy3.
The equation to the pair of tangents to the parabola S =0 from P(xs, y1) is Si° = S1:S.

A point (X y) on the parabola y? = 4ax can be represented as x=at’, y =2at in a single parameter
t. These equations are called parametric equations of the parabola y* = 4ax. The point
(at?, 2at) is simply denoted by t.

The equation of the chord joining the points t; and t, on the parabola y? = 4ax is y(t; + t;) = 2x
+ 2atts.

If the chord joining the points t; and t, on the parabola y* = 4ax is a focal chord then t;t, = —1.

The equation of the tangent to the parabola y? = 4ax at the point “t” is yt = x + at’.
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The point of intersection of the tangents to the parabola y°= 4ax at the points t; and t, is

(atltz, a[t1+t2]).
The equation of the normal to the parabola y? = 4ax at the point tis y + xt = 2at + at’.

Three normals can be drawn from a point (xs, y1) to the parabola y? = 4ax.

If t, t,, t; are the feet of the three normals drawn from point (xs, y1) to the parabola y* = 4ax

then t +tp + t; = 0, tyty + tots +taty = 22—

If the normals at t; and t, to the parabola meet on the parabola, then tit; = 2.

For the parabola x = Iy* + my +n,
2
Vertex= (n—j—l,ﬂj, Focus :(n+1_rn ﬂj

1-m?

Latusrectum :I—l, axis is y+ %:o, directrix is x=n+

For the parabola y= Ix? + mx + n,

2 _ _ 2
Vertex=| - ™ n-"" | Focus = [ =M no =M |
21" 4l 21 21

1-m?

4]

Latusrectum = Tl axisisy + %:O, directrix is y=n+

The condition that the line Ix +my + n = 0 may be a tangent to the parabola
i) y* = 4ax isam® = In ii)x*=4ayisal? =mn.

The pole of the line Ix+my + n = 0 (m=0) with respect to the parabola

V2 = daxis [ _22M) iy x2 = is(_2al n
i)y —4axls(|, Iju)x 4ay|s( m,mj

The length of the chord joining ty, t, on y? = 4ax is a|t, —t, |{/(t, + 1, +4.
The length of the focal chord through the point t on the parabola y* = 4ax is a(t + 1/t).
If the normal at t; on the parabola y? = 4ax meets it again at t, then t, = —t; — 2/t;.

If the normal at t on the parabola y? = 4ax subtends a right angle

i) at its focus then t =+ 2 i) at its vertex then t = 2

The orthocentre of the triangle formed by three tangents of a parabola lies on the directrix



72. The angle between the pair of tangents drawn from (x1, y1) to the parabola S = y? — 4ax = 0 is

-1 S11
X, +a

tan

TABLES FORM OF CONIC SECTION : (FORMULAS)

PARABOLA
SN Equation Vertex Focus Latus Axis Tangent Directix Equation
0 rectum at vertex of L.R.
i) y? = dax (0, 0) (a, 0) 41al y=0 x=0 |x+a=0|x-a=0
o | (-K)*=4alx- e e x-h | x-h-a=
i) h) (h,k) |[(@+hk) 4 |a| y—-k=0 | x-h=0 ta=0 0
.| (x=h)*=4a(y- o e y-k+ | y-k-a=
iii) K) (h,k) |(h,k+a) 4a| x—-h=0 | y-k=0 a=0 0
2 2 2
Horizontal ellipse (a > b) e = Y2 a_b or ‘fl—b—z
a
Major Min Latus
Equation | Centre Focii Directricies ! or Verticies | Property
axis .| rectum
axis
x? y? 1 \/ 2 .2 \/ 2 .2 2 = 2 (#a, 0) SP+Stp
a_2+b_2_ (0,0) (i a<-b ,O) ( ac-b )X:ia y:0 X= 2b_ -, _+
0 a (0, +b) =2a
2
Vertical ellipse (a>b) e = 1—%

1
§+§=1 0,0) 0+vb2 —a2) | (Vb2 —a?)y = +b? x=0 | y=0 a2 | (#a0) SP+S'P
a? b (0, £ b) =2b

2 b?
Hyperbola e" =1+ =
a
: . Latus .
Equation | Centre Focii Directricies Maj_or er!or rectu Verticie Property
axis axis 0 S
22 2 12 2 2 _ 1a2 2 + _gl
XT_yT:l ©, 0) (#+va® +b%0) | (a® +b%)y=ta y=0 | x=0 L (xa, 0) |SP_SP|
a? b a (0, £ b) =2a

The equation of the tangent at (x1, y1) , the equation of the chord of contact of (x1,y1) and polar of (x1,

y1) with respect to S

=0isS; =0.




Parabola

Equation of the tangent, chord of contact, and the polar at (X1, y1)

Curve Equation Si=0
Parabola y? = dax yy1= 2ax + 2ax,
. x? y? XX, VY
E”lpse a—2+b—2:1 ?4‘?:1

2 2
L A XXy W1 _
Hyperbola 2 bl 2 b2 =1

Parametric equations :

Curve Equation Parametric point Parametric equation
Parabola y? = dax t = (at?, 2at) X = at?, y = 2at
. x2 y? . .
Ellipse a—2+b—2 =1 6 = (acosb, bsino) X =acos, y = bsind
X2 y2
Hyperbola 7 bT 1 6 = (asecO, btano) X = asech, y = btano
a

Equation of the chord joining two parametric points :

Curve Equation Point Equation of the chord
Parabola y? = dax t b (t1 + L)y —2x =2at;t,
. x2 y? X Yo (owrﬁj_ [a—ﬁj
Ellipse a—2+b—2—1 a, B S cos +8in == | =cos| —
x2 y? X y . (o+B) a+p
Hyperbola a—z—b—2=1 a, B P +—S|n( 5 |=cos|

Equation of the tangent at the parametric point :

Curve Equation Point Equation of the tangent Slope
Parabola = dax t =% +at %
2 .
i Xy X Y aing — -bsino
Z 4+ —C0sS0+=sinf=1
Ellipse a2 b2 0 a asin®
2 X y b
Hyperbola X Y 4 —secO-=tan0 =1
yP a® b? 0 a b asin®




Parabola

Equation of the normal at the parametric point :

Curve Equation Point Equation of the Normal Slope
Parabola y? = dax t Y+ tx = 2at + at+3 —t
. x? y? ax by 2 2 asin6
RANEIRE A -— =a’°-b
Ellipse a? * b2 1 0 cosH sin6 bcos 0
x2 y? ax by o o —asin0
2 Y _ ——=a“+b
Hyperbola 7 2 0 c0s0  sino + b

Condition for tangency and the point of contact (y = mx +¢) :

Curve Equation Condition for Point of contact
tangency
2 2
Parabola y® = dax c=2 [3,—61) or [%,—aj
m m m m m
2 2 _a2m b2
Ellipse L c=a’m’+b’ [ 2 m,—]
a b C C
x? y? 2_ 2.2 2 ~a’m -b?
Hyperbola a_z_b_z_l cc=am -b P
Condition that he line Ix + my + n =0 is a tangent :

Curve Equation Condition of tangency
Parabola y? = dax In = am?
Parabola X2 = day mn = al?

2 2

Ellipse :—2+Z_2:1 a?12 + b’m? = n?
H bol x? yz_ 212 _ p2m? = n?

yperbola —-=1 a’ll”-bm“=n

a b
Equation of the tangent is of form :

Curve Equation Equation of the tangent

Parabola y? = dax Y=mx + %
i X2 y2

Ellipse a—2+b—2:1 y=mx+ [22m? + b2
Hyperbol Y = X+ JaZm? _p?

yperbola a—z—b—z— y=mxz+ va‘m* -b
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Equation from which the slopes of the tangents through (x1,y1) are given

Curve Equation Condition of tangency
Parabola y? = 4dax m?X; — my;+ a =0
Ellipse XY m2(x,? — a%) — 2xay1m +y1> —b?=0
2 b2 1 Y1 1
ﬁ_ﬁ _ 20y 2 52 2, 12—
Hyperbola " 1 m(X1”—a%) — 2xy1m +y;“+ b“=0
a

The equation of the chord having the mid point (X1, y1) is

Curve Equation Equation of the chord
Parabola y? = 4dax yy1 —2ax; = yi? — 2ax;
2 2

. x2 y? X Wi _ X1 Y1
Ellipse a—2+b—2:1 2 b2 al bl
2 y? X9 YY1 _Xi Y1

Hyperbola a_z_b_2:1 a2 b2 a’ bl

The condition that the lines I;x +

myy +ny =0 and IoX + Xoy + n,=0

Curve Equation Condition
Parabola y? = dax Nyl + noly = 2amym;
2 2
. X
Ellipse —2+Z—2 =1 a’ly I + b?mim; = nany
a
x? y? 2 2
Hyperbola Py =1 a Iyl —b"mim, =niny
a

The locus of the point of intersection of the perpendicular tangents is

may be conjugate with respect to

Curve Equation Equation of the locus
Parabola y? = 4dax Directrix—-x+a=0
; x? y? : : 2,00,2 — 42 2
Ellipse —2+b—2:1 Director circle—x“+y“=a“+b
a
x? y? ; : 2002 — 22 K2
Hyperbola _Z_b_2:1 Director circle —x“+ty“=a“-b
a




Parabola

The locus of the points whose chords of contact subtend a right angle at the origin is

Curve Equation Equation of the locus
Parabola y? = dax X+4a=0
. x2 y? x2 y? 1 1
Ellipse a—2+b_2:1 a_4+b_4:a_2 =
x2 y2 X2 y2 1 1
Hyperbola a_z_b_2:1 a_4+b_4:a_2_b_2
Ends of latus rectum :
Curve Equation Equation of the locus
Parabola y? = 4ax (a, 2a), (a, - 2a)
. x2 y2 b2
RANTIRC A +ae,+ —
Ellipse " + " 1 ae . —
2 2 b2
Hyperbola X—Z—Z—Zzl [i ae,i?J
a

For any conic, the tangents at the end of Latus rectum, the corresponding directrix and the axis are

concurrent.
Curve Equation L L Point of
concurrency
Parabola y? = dax (a, 2a) (a, —2a) z=(-4a,0)
2 2 2 _h2
Ellipse XY {ae,b—] {ae, b j z:[i,oj
a“~ b a a e
-b
x? y? b? [ae j _(a
Hyperbola ¥_b_2:1 {ae,; a 2= 2,0




